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ROTATION CURVE PROBLEM




ROTATION CURVE PROBLEM

The problem of galactic rotation is the empirical statement that rotational velocity around
the galactic center seems to flatten out for a large fraction of the galaxy population
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ROTATION CURVE PROBLEM

e Typical solutions:
o Modifications of mechanics, such as MOND, solve the issue but run into problems at
larger cosmological scales.
o Modification of the gravity source, usually in the form of a spherical Dark Matter halo
envelope
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ROTATION CURVE PROBLEM

Typical solutions:
o Modifications of mechanics, such as MOND, solve the issue but run into problems at
larger cosmological scales.
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ROTATION CURVE PROBLEM

Typical solutions:
o Modifications of mechanics, such as MOND, solve the issue but run into problems at
larger cosmological scales.

o Modification of the gravity source, usually in the form of erical Dark Matter ha

envelope

IN A 3D COSMOS:

IN A 2D COSMOS:
We expect:

We expect: - 26 1/r - F o< /12

v2 o< constant — F o< 1/r
We see:
v2 o< constant — F o< 1/r

But
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ROTATION CURVE PROBLEM
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CYLINDRICAL VS SPHERICAL HALO
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CYLINDRICAL VS SPHERICAL HALO

e A spherical DM distribution has to be fine-tuned to have an isothermal p(r)oc1/r* profile to
explain the flatness of the rotation curve.
e A cylindrical source of linear density A naturally explains constant rotation curves
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CYLINDRICAL VS SPHERICAL HALO

e A spherical DM distribution has to be fine-tuned to have an isothermal p(r)oc1/r* profile to
explain the flatness of the rotation curve.
e A cylindrical source of linear density A naturally explains constant rotation curves

Since thg
r the so

Rotation curves cannot distinguish
spherical haloes with isothermal
profiles from elongated haloes with
arbitrary profile.

Out-of-plane observables:
Stellar streams
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TORSION IN STELLAR STREAMS
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TORSION IN STELLAR STREAMS

The torsion of a curve measures how sharply it is twisting out of the osculating plane, it is defined

by the velocity and normal acceleration.
ﬁustrated by the Frenet-Serret \
trihedron:
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N-BODY SIMULATIONS OF STELLAR STREAMS
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N-BODY SIMULATIONS OF STELLAR STREAMS

A test body moving in a central field has null
torsion 7=0.
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A cluster made of test bodies moving
around a galaxy would lose dust grains
forming a kind of contrail, its shape through
space would be a planar curve.

Tidal distortion of a cluster around a galaxy
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N-BODY SIMULATIONS OF STELLAR STREAMS

N=1000 t=500.0My

Stream t=0
Stream
—— Galactic center

Stellar streams are the result of the tidal
stretching of a globular cluster or dwarf
galaxy

Stars at different heights can deviate the orbit
from a planar curve. That the effect is
negligible.

A cluster made of test bodies moving
around a galaxy would lose dust grains
forming a kind of contrail, its shape through
space would be a planar curve.

Tidal distortion of a cluster around a galaxy
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N-BODY SIMULATIONS OF STELLAR STREAMS

Sphere t=500 My Cylinder  t=500 My
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N-BODY SIMULATIONS OF STELLAR STREAMS

Sphere t=1 Gy Cylinder t=1 Gy
Stream t=0
Stream
—— Galactic center
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MILKY WAY STREAMS
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THE MILKY WAY STREAMS

We select as relevant streams at distances d>30 kPc from the galactic center, so that the internal
structure of the galaxy produces the minimum possible alteration in the stream
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THE MILKY WAY STREAMS

In a galaxy such as the Milky Way the ¢
torsion of galactic streams should have a =
characteristic scale of 1 /(10 kPc). F
Our selection of streams at 30 kpc or

more means that we would consider =
values of the torsion of order 0.03 in units¢
of inverse kPc to be sizeable and very £
different from zero. £
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CONCLUSIONS
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CONCLUSIONS

Key ideas:
e This is a first exploratory study.
e Proposal for a new observable: Torsion, T
e We do not favor one or another interpretation of the DM halo shape in view of current data.

Future approaches:

e C(Calculate the torsion of N-Body simulations to compare to Milky Way streams
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